International laboratory «Modeling of physical processes in extreme light fields»

The laboratory conducts theoretical research and numerical modeling of the interaction of high-intense electromagnetic fields generated at modern laser facilities, with elementary particles, atomic and nanoscopic systems, plasma and vacuum. The core research staff of the Lab represents the scientific school of Prof. Nikolay Narozhny (1940-2016), one of the founders of the theoretical strong field physics, whose pioneering work roots back to the mid of the 60-es of the XX century when this field of physics had emerged soon after the invention of lasers.

The Laboratory works in mutual collaboration with several theoretical and experimental groups throughout the world, including theoretical support for such large-scale laser projects as Extreme Light Infrastructure (ELI) and  Exawatt Center for Extreme Laser Science (XCELS).

Research fields:

  • Creation of elementary particles by superintense laser fields from vacuum
  • Laser-induced QED cascades
  • Plasma dynamics in the radiation-dominated regime
  • Generation of superstrong magnetic fields in laser plasma
  • Strong field ionization
  • Generation of high-order harmonics
  • Clusters and fullerenes in intense laser fields

Research groups:

QED in extreme electromagnetic fields

Dr. A. Fedotov

Prof. D. Blaschke

Dr. E. Gelfer.

K. Krylov

A. Mironov

Atoms and nanostructures in strong laser fields

Prof. S. Popruzhenko

Dr. W. Becker

V. Tulsky.

Physics of laser plasma and strong magnetic fields

Dr. Ph. Korneev

Prof. J. Fuchs


Applied Physics Institute (Nizhny Novgorod, Russia)

Ecole Polytechnique (France)

Extreme Light Infrastructure (European Union)

Max Planck Institute for Nuclear Physics (Heidelberg, Germany)

Helmholtz Institute (Ian, Germany)

Russian Federal Nuclear Center – VNIIEF (Russia)

University of Bordeaux (France)

University of Kioto (Japan)

University of Rostock(Germany)

Running projects:

Quantum dynamics of elementary particles and plasmas in extremely intense fields (supported by RFBR – 16-02-963A, 2016-18)

Generation of electron-positron plasma in high-intensity nonhomogeneous laser fields (supported by RFBR 16-32-00863mol_a, 2016-17)

Laser-assisted generation of magnetized plasma structures in targets with curved surfaces (supported by RFBR 16-52-50019YaF


    1. E.G. Gelfer, A.A. Mironov, A.M. Fedotov, V.F. Bashmakov,E.N. Nerush, I.Yu. Kostyukov, N.B. Narozhny, «Optimized multibeam configuration for observation of QED cascades», Phys. Rev. A 92, 022113 (2015).
    2. В.М. Кулешов, В.Д. Мур, Н.Б. Нарожный, А.М. Федотов, Ю.Е. Лозовик, В.С. Попов, «Кулоновская задача с зарядом ядра Z>Zcr», УФН 187(8), 845-852 (2015).
    3. A.M. Fedotov, “Qualitative considerations in Intense Field QED”, arXiv:1507.08512.
    4. В.М. Кулешов, В.Д. Мур, Н.Б. Нарожный, А.М. Федотов, Ю.Е. Лозовик, «О кулоновской задаче в графене со щелью в электронном спектре», Письма в ЖЭТФ 101(4), 282-288 (2015).
    5. N.B. Narozhny, and A.M. Fedotov, «Extreme Light Physics», Contemporary Physics, 56(3), 249-268 (2015).
    6. Е.Г. Гельфер, А.М. Федотов, В.Д. Мур, Н.Б. Нарожный, «Бустовы моды массивного фермионного поля и задача Унру», ТМФ, 182(3), 405–434 (2015).
    7. E.G. Gelfer, I.Yu. Kostyukov, A.A. Mironov, N.B. Narozhny, A.M. Fedotov, «Perspectives of implementing QED cascade production with the next generation of laser facilities», J. Phys.: Conf. Ser. 594, 012054 (2015).
    8. Н.Б. Нарожный, А.М. Федотов, «Квантовоэлектродинамические каскады в интенсивном лазерном поле», УФН 185(1), 103–110 (2015).
    9. S.V. Popruzhenko, V.A. Tulsky, Control of terahertz photoelectron currents generated by intense two-color laser radiation interacting with atoms, Phys. Rev. A 92, 033414.
    10. B.M. Karnakov, V.D. Mur, S.V. Popruzhenko and V.S. Popov, Current progress in developing the nonlinear ionization theory of atoms and ions, Physics-Uspekhi 58, 3.
    11. S.G. Bochkarev, E. d’Humières, P. Korneev, V.Y. Bychenkov, V. TikhonchukThe role of electron heating in electromagnetic collisionless shock formation, High Energy Density Physics 17, 175-182, 1 (2015)
    12. D.P. Higginson, P. Korneev, J. Béard, S.N. Chen, E. d’Humières, H. Pépin et al A novel platform to study magnetized high-velocity collisionless shocks, High Energy Density Physics 17, 190-197, 4 (2015)
    13. P. Korneev, E. D’Humières, V. Tikhonchuk, D.P. Higginson, J. Fuchs TNSA-like plasmas collision in an ambient magnetic field as a route to astrophysical collisionless shock observation in a laboratory, High Energy Density Physics 17, 183-189 1 (2015)
    14. T. Pisarczyk, S.Y. Gus’ kov, R. Dudzak, T. Chodukowski, J. Dostal et al Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma, Physics of Plasmas 22 (10), 102706 3 (2015)
    15. J.J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka et al Laser-driven platform for generation and characterization of strong quasi-static magnetic fields, New Journal of Physics 17 (8), 083051 23 (2015)
    16. P. Korneev, E. d’Humières, V. Tikhonchuk Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target, Physical Review E 91 (4), 043107 9 (2015)
    1.  A.M. Fedotov, «Quantum regime of laser-matter interactions at extreme intensities», arXiv:1612.02038 [accepted in DESY-PROC-2016-04 book, DOI: 10.3204/DESY-PROC-2016-04].
    2. А.А. Миронов, А.М. Федотов, Н.Б. Нарожный, «Генерация квантово-электродинамических каскадов при наклонном столкновении ультрарелятивистских электронов с интенсивным лазерным полем», Квантовая электроника 46(4), 305–309 (2016).
    3. A. Fedotov, N. Narozhny, A. Mironov, «Threshold Laser Intensity Refinement and Scenarios for Observation of QED Cascade Production», Journal of Physics: Conference Series 691, 012023 (2016).
    4. A.M. Fedotov, N.B. Narozhny, «Scalar and fermion representations of the Lorentz group in Minkowski plane, QFT correlators, pair creation in electric field and the Unruh effect», Int. Journ. of Mod. Phys. D 25(3), 1630008 (2016).
    5. Th. Keil, S.V. Popruzhenko, and D. Bauer, Laser-Driven Recollisions under the Coulomb Barrier, Physical Review Letters 117, 243003.
    6. T.V. Lisykina, S.V. Popruzhenko and A. Macchi, Inverse Faraday Effect driven by the radiation reaction force, New Journal of Physics 18, 072001.
    7. V.S. Popov, V.D. Mur, N.B. Narozhny and S.V. Popruzhenko, On electron-positron pair creation by the field of intense laser radiation from vacuum, JETP 149, 623 (in Russian).
    8. E.G. Gelfer, Generation of quantum electrodynamic cascades by colliding laser pulses, Quantum Electronics 46 (4), 310 (2016)
    9. M. Jirka, O. Klimo, S.V. Bulanov, T. Zh. Esirkepov, E. Gelfer, S.S. Bulanov, S. Weber, G. Korn, Electron dynamics and γ and e− e+ production by colliding laser pulses, Physical Review E 93 (2), 023207 (2016)
    10. E.G. Gelfer, H. Kadlecová, O. Klimo, S. Weber, G. Korn, Gravitational waves generated by laser accelerated relativistic ions, Physics of Plasmas 23 (9), 093107 (2016)
    11. S.Y. Gus’kov, F.A. Korneev Neutronless nuclear reaction at inertial confinement of the magnetized plasma of laser-accelerated protons and boron nuclei, JETP letters 104 (1), 1-5 (2016)
    12. T Pisarczyk, SY Gus’kov, T Chodukowski, J Dostal, R Dudzak et al Comprehensive investigation of laser energy transport to a massive planar targets with femtosecond polaro-interferometry, (2016)